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1. Introduction
A safety property of a program asserts that some proscribed "bad thing" does not occur during

execution. To prove that a program satisfies a safety property, one typically employs an invariant, a
characterization of current (and possibly past) program states that is not invalidated by execution. If
an invariant I holds in the initial state of the program and I =* Q is valid for some Q, then -, Q cannot
occur during execution. Thus, to establish that a program satisfies the safety property asserting that

Q does not occur, it suffices to find such an invariant I.

Timing properties are safety properties where the "bad thing" involves the time and program

state at the instants that various specified control points in a program become active.1 Timing proper-
ties can restrict externally visible events, like inputs and outputs, as well as things that are internal to
a program, like the value of a variable or the time that a particular statement starts or finishes. For
example, in a process control system, the elapsed time between a stimulus and response must be
bounded. This is a timing property where the "bad thing" is defined in terms of the time that passes
after one control point becomes active until some other control point does. Timing properties con-
ceming internal events are useful in reasoning about ordinary concurrent programs that exploit
knowledge of statement execution times to coordinate processes. One such protocol-for mutual
exclusion-is given in section 4.

Because timing properties are safety properties, the invariant-based method outlined above for
reasoning about safety properties can be used to reason about timing properties. This means that a
programming logic L to verify (ordinary) safety properties can form the basis for a logic L' to verify
timing properties. It suffices that in L' we are able to

(1) specify in I and Q information about the times at which events of interest occur and

(2) establish that program execution does not invalidate such an I.

Point (1) means that in defining L', the language of L might have to be extended so that it becomes
more expressive. Point (2) means that the inferencing apparatus of L might have to be refined so that
I can be proved an invariant for a program whose semantics includes information about execution
timings.

This paper describes extensions to a logic of proof outlines [Schneider 92] to enable verification
of timing properties for concurrent programs. The approach taken is the one just outlined: we start
with a logic for proving ordinary safety properties, augment the language according to (1) and refine
the inference rules according to (2). The presentation is organized as follows. In section 2, we
describe a logic of proof outlines. Section 3 introduces and axiomatizes a new type of atomic action,
called a real-time action. The correctness proof for a mutual exclusion protocol in section 4 illus-
trates the use of our logic. Related work and some unresolved technical issues are discussed in sec-
tion 5.

2. Proof Outlines

In order to reason about a program, we must be able to define sets of program states and reason
about them. First-order predicate logic is an obvious choice for this task, and we employ the usual

lInformally, the active control points at any instant are determined by the values of the program counters at that in-
stant. See §2 for a more formal dc' ,ition.
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correspondence between the formulas of the logic and the programming language of interest--each
variable and expression of the programming language is made a term of the logic and each Boolean
expression of the programming language is made a predicate of the logic. It will be convenient to
assume that predicates and terms are always defined, although the value of a term may be unspecified
in some states. For example, we will assume that the term x/y has a.value whatever value y has, but
that y*(x/y) need not equal x when y is 0 because the value of x/y is unspecified in such states.

Predicates and function symbols for the programming language's data types provide a way to
express facts about program variables and expressions. The state of a program, however, also
includes information that tells what atomic actions might be executed next. For representing this
control information, we will find it convenient to fix some predicate symbols, called control predi-
cates, and give axioms to ensure that, as execution proceeds, changes in the values of these
correspond to changes to program counters. (An alternative representation would have been to define
a "program counter" variable and a data type for the values it can assume.)

2.1. Control Predicates

A program consists of a set of atomic actions, each of which executes as a single indivisible
state transformation. The control points of the program are defined by these atomic actions. Each
atomic action has distinct entry control points and exit control points. For example, the atomic action
that implements skip has a single entry control point and a single exit control point; the test for an if
has one entry control point and one exit control point for each alternative. Execution of an atomic
action (x can occur only when an entry control point for a is active. Among other things, execution
causes that active entry control point to become inactive and an exit control point of a to become
active.

For each statement or atomic action S, we define the following control predicates:

at(S): an entry control point for S is active.

after(S): an exit control point from S is active.

The various statements in a programming language give rise to axioms relating these control predi-
cates. The axioms formalize how the control predicates for a statement or atomic action S relate to
the control predicates for constructs comprising S and constructs containing S, tased on the control
flow defined by S. For a guarded-command programming language [Dijkstra 751, these axioms are
given in Figure 2.1. We use GEvalf(S) there to denote the guard evaluaton action for an if and
GEvaldo(S) to denote the guard evaluation action for a do. And, we w; te P1 I P 2 E. ( P, to
denote that exactly one of P 1 through P, holds.

2.2. Syntax and Meaning of Proof Outlines

A proof outline PO(S) for a program S is a text in which, every atomic action of S is preceded
and followed by an assertion enclosed in braces (" {" and "i"). Each assertion is a Predicate Logic
formula in which

" the free variables are program variables (typeset in italics) or rigid variables, (typeset in upper-
case roman), and

* the predicate symbols are control predicates or the predicates of the programming language's
expressions.
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Atomic action: For S a skip, guard evaluation action, or assignment:
-' (at(S) A after(S))

Sequential composition: For S the sequential composition S I S2:
(a) at(S) = at(S I)
(b) after(S) = after(S2)
(c) after(S I) = at(S2)

if Control Axioms: For an if statement:

S: if BI--- S 1 0 B 2 -- S 2 I0 "" [ B, --S, fi

(a) at(S) = at(GEval (S))
(b) after(S) = (after(S i) (9 after(S2) (9 ... (9 after(S))

(c) after(GEval y(S)) = (at(S I) 9 at(S2) (9 ... 9 at(S.))

do Control Axioms: For a do statement:
S: do B-.S1  0i B 2 -+S 2  0 ... U B, -+-S, od
(a) at(GEvalao(S)) = (at(S) 9 after(S) (9 after(S2)(D ... (9 after(S))
(b) after(GEvalao(S)) = (at(S1 ) (9 at(S2 ) 9 ..9 at(S,) (9 after(S))

cobegin Control Axioms: For a cobegin statement:

S: cobegin S1 // S 2 // ... // S, coend
(a) at(S) = (at(SI) A ... A at(S,))
(b) after(S) = (after(S1 ) ... A after(S))

Figure 2.1. Control Predicate Axioms

Assertions in which all terms are constructed from program variables, rigid variables, and predicates
involving those variables are called primitive assertions. An example of a proof outline appears in
Figure 2.2. In it, x is a program variable and X is a rigid variable. All assertions except the first and
last are primitive.

The assertion that immediately precedes a statement or atomic action T in a proof outline PO(S)
is called the precondition of T and is denoted pre(T); the assertion that directly follows T is called the
postcondition of T and is denoted by post(T). For the proof outline in Figure 2.2, this correspondence
is summarized in Figure 2.3. Finally, for a proof outline PO(S), we write pre(PO(S)) to denote
pre(S), post(PO(S)) to denote post(S), and use a triple

(2.1) {P} PO(S) {Q)

to specify the proof outline in which pre(S) is P, post(S) is Q, and all other pre- and postconditions
are the same as in PO(S).

A proof outline PO(S) can be regarded as associating an assertion pre(T) with control predicate
at(T) and an assertion post(T) with after(T) for each statement T in a program fragment S.

-3-



(x=X A at(S))
S: ifx>O -- [x=X A x>O)

S: skip
{x=X A x>O)

! x50 -4 (X=X A X:50}
S2 : x :=-x
{-x=X A -x:50}

fi
{x=abs(X) A after(S))

Figure 2.2. Computing abs(x)

Assertion Assertion Text
pre(S) x=X A at(S)
post(S) x=abs(X) A after(S)
pre(SI) x=X A X>0

post(S1) x=X A X>O
pre(S2) X=X A X50
post(S2 ) -x=X A -x<0

Figure 2.3. Assertions in a Proof Outline

Consequently, a proof outline defines a mapping from each control point X of a program to a set of
assertions-those assertions associated with control predicates that are true whenever X is active. In
most cases, a control point is mapped to a single assertion. For example, the proof outline

(2.2) (P S1 (Q) S2 (R)

maps the entry control point for program S I S 2 to the single assertion P. This is because at(S ) and
at(S1 S 2) are the only control predicates that are true if and only if the entry control point for S $2 is
active, and (2.2) associates P with both of these control predicates. However, a proof outline can map
a given control point to multiple assertions. An example of this appears in Figure 2.2. There, the exit
control point for S I is mapped to two assertions--ost(S 1 ) and post(S)-because whenever the exit
control point of S I is active both after(S I) and after(S) are true.

The assertions in a proof outline are intended to document what can be expected to hold of the
program state as execution proceeds. The proof outline of Figure 2.2, for example, implies that if
execution is started at the beginning of SI with x=23 (a state that satisfies pre(S )), then if S 1 com-
pletes, post(S 1) will be satisfied by the resulting program state, as will post(S). And if execution is
started at the beginning of S with x=X, then whatever assertion is next reached-be it pre(S1 )
because X2:0 orpre(S2) because X<0-that assertion will hold when reached, and the next assertion
will hold when it is reached, and so on.

With this in mind, we define a proof outline PO(S) to be valid if it describes a relationship
among the program variables and control predicates of S that is invariant and, therefore, not falsified
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by execution of S. The invariant defined by a proof outline PO(S) is "if a control point X is active,
then all assertions that X is mapped to by PO(S) are satisfied" and is formalized as the proof outline
invariant for PO(S):

(2.3) Ipo(s): A ((at(T) = pre(T)) A (after(T) * post(T)))
T

For example, the proof outline invariant defined by PO(S) of Figure 2.2 is

at(S)=(X=XA at(S)) A after(S)=(x=abs(X) A after(S))
A at(SI)=*(x=XAxO) A after(S)=*(X=XAX--O)
A at(S2 )=: (x=XAx<O) A after(S2)='(-x=XA-x<O).

Equating proof outline validity with invariance of 'po(s) can have disturbing consequences for
proof outlines that map a single control point to multiple assertions. The following valid proof out-
line illustrates this.

(2.4) (false)
S: iftrue - (false) S': x :=3 {x=I} fi
{x=2)

This proof outline maps the exit control point for S' to two assertions, post(S') and post(S). The
proof outline is valid because Ipo(s)

at(S) =*false A after(S) => x=2
A at(S') = false A after(S ) =>x=l

is equivalent to false (since after(S')=after(S) is valid) and therefore lPo(s) cannot be falsified by exe-
cution of any statement. The problem with (2.4) is that post(S), the assertion associated with the exit
control point of S, is not implied by post(S'), the assertion associated with the exit control point for
the last atomic action in S (i.e S'). As a result, what (2.4) really associates with the exit control point
for S' (viz. post(S') A post(S)) is not accurately characterized by post(S). Given a valid proof outline
PO(S), it seems reasonable to expect post(S) to hold whenever an exit control point of S is active.
Similarly, pre(S) should be constrained so that if it holds and an entry control point of S is active,
then assertions that PO(S) associates with that entry control point also hold. To formalize these con-
straints, we define a proof outline PO(S) to be self consistent if and only if

(2.5) at(S) A pre(S) =i o1sp(S)

(2.6) after(S) A "Po(S) =* post(S)

where
lPo(s): A ((at(T) = pre(T)) A (after(T) post(T)))

T*S

IIPO(s) is just iPo(s) with the two conjuncts concerning pre(S) and post(S) (i.e. "at(S) =:'pre(S)" and
"after(S) =*post(S)") omitted. 2 Thus, (2.5) ensures that whenever any entry control point X for S is
active, if pre(S) holds then so does the assertion that PO(S) associates with X. And (2.6) ensures that
whenever any exit control point X of S is active, if the assertion associated with that control point
holds then post(S) will hold as well. Together, (2.5) and (2.6) mean that pre(S) and post(S) consti-
tute a reasonably complete interface to S: provided pre(S) holds when execution of S is started, the
assertions of PO(S) will characterize any states that arise as execution proceeds and post(S) will hold

211 is an acronym for internal invariant.
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if an exit control point for S is ever reached. It should come as no surprise that the proof outline of
(2.4) is not self consistent--(2.6) is violated.

The requirements for validity of a proof outline-invariance of 'po(S) and self-consistency--can
be formalized in terms of Hs*-validity of Temporal Logic formulas, where 9s is the set of infinite
state sequences that model execution of S started from any program state [Owicki-Lamport 821. In
this formalization, we are able to write 9-s=P in order to denote that a Predicate Logic formula P is
valid because every program state is the first state of some interpretation in 9rs.

(2.7) Valid Proof Outline. A proof outline PO(S) is valid if and only if:

Self Consistency: 91' 1=(at(S) A pre(S) =* I"po(S))

9(*I-(after(S) A "Po(S) = post(S))

Invariance: - 1=-(po(s) =* [lPo(s))

Notice that according to Valid Proof Outline (2.7), rigid variables in proof outlines can be used
relate the values of program variables from one state to the next. This is because free rigid variables
in a temporal logic formula are implicitly universally quantified. Thus, lPo(s) = Cllpo(s) is 91s-valid
if and only if for any assignment of values to the proof outline's rigid variables, execution of S starts
in a state that does not satisfy 'po(S) or results in a sequence of states that each satisfy po(S).

For example, the proof outline of Figure 2.2 is valid and contains a rigid variable X to record the ini-
tial value of x. Starting execution in a state where at(S2) and x=-23 holds will satisfy
lpos) =>l EIpo(s) even if -23 is not assigned to X because then Ipo(S) is not satisfied (causing
'Po(s) = OIpo(s) to be trivially satisfied).

2.3. Axiomatization for a Proof Outline Logic

Proof Outline Logic is an extension of Predicate Logic. The language of Predicate Logic is
extended with proof outlines for all atomic actions, statements, and programs. The axioms and infer-
ence rules of Predicate Logic are extended with axioms and inference rules that allow only valid
proof outlines to be proved theorems. In particular, there are some statement-independent inference
rules as well as an axiom or inference rule for each type of statement and atomic action.

The statement-independent inference rules for Proof Outline Logic are given in Figure 2.4.
Rule of Consequence allows the precondition of a proof outline to be strengthened and the postcondi-
tion to be weakened, based on deductions possible in Predicate Logic. Rule of Equivalence allows
assertions anywhere in a proof outline to be modified, provided a self consistent proof outline having
an equivalent proof outline invariant results. A rigid variable can be renamed or instantiated by using
the Rigid Variable Rule; PO(S) p in the conclusion of that rule denotes a proof outline in which
rigid variable X in every assertion is replaced by Exp, an expression involving constants and rigid
variables (only). Finally, the Conjunction and Disjunction Rules allow two proof outlines for the
same program to be combined. POA(S)GPOB(S) is used to denote the proof outline that associates
assertion AC, AB CP with each control predicate cp, where X, is the assertion that POx(S) associates
with control predicate cp; POA(S) 0 PO(S) denotes the proof outline that associates Acp v Bcp with
each control predicate cp

We now turn to the axiomatization for a concurrent programming language. The skip statement

is a single atomic action whose execution has no effect on any program variable.
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P'=*P, {P}PO(S)(Q), Q=*Q"Rule of Consequence: {P" POW(S) Q

PO(S), Ipos) = Ipo,(s), PO'(S) self consistent
Rule of Equivalence: PO'(S)

Rigid Variable Rule: For Exp an expression involving only constants
and rigid varibles:

{P) PO(S) {Q)
{Pxp ) PO(S)xxp {QExp

Conjunction Rule: POA(S), POB(S)
POA(S)OPOB(S)

Disjunction Rule: POA(S), POB(S)
POA(S)OPOa(S)

Figure 2.4. Proof Outline Logic: Statement-independent Rules

skip Axiom: For a primitive assertion P: {P) skip (P I

The assignment statement x := E is also a single atomic action. Its execution involves evaluat-

ing E and then storing that value in x. 3

Assignment Axiom: For a primitive assertion P: (PI) := J {PJ

Sequential composition of statements is denoted by juxtaposition (without the traditional semi-
colon separator).

{P) PO(S1 ) {Q}, {Q} PO(S2) (R)
Statement Composition Rule: (P P(S) Q Q) P(S 2) (R)

{P) PO(SI)} PO(S2) {R)

An if statement consists of an atomic guard evaluation action that selects for execution an alter-
native whose guard is true; if no guard is true, then the guard evaluation action blocks. We use the
following rule for reasoning about a guard evaluation action.

3For simplicity, we restrict consideration to the case where x is a simple identifier and not an array. See [Gries-Levin
801 for the more general rule.
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GEvalI$(S) 4xiom: For an if statement

S: ifB 1 --- S, 0] B 2 --- S 2 0] ... B,, -- S,, fi

and a primitive assertion P:

(P) GEvalf(S) (P A ((at(S 1) =* B 1) A... A (at(S,) => B.))}

A proof outline for an if is then constructed by combining a proof outline for its guard evaluation

action with a proof outline for each alternative.

if Rule: (a) (P} GEval$(S) (R),
(b) (R Amat(S I)) =* PI 1,..., (R A at(S.)) = P.,

(c) (P1)PO(S) {Q}, ... {P"}PO(S) tQ},
(P)
S: if B -. (P I PO(S 1) (Q)

- B - {P,} PO(S.) {Q)
fi

{Q}

Since the guard evaluation action for an if blocks when no guard is true, we can use an if to
implement conditional waiting. For example,

if B -- skip fi

blocks until the program state satisfies B.

The guard evaluation action for do selects a statement Si for which corresponding guard Bi

holds and if no guard is true, then the control point following the do becomes active.

GEvald,(S) Axiom: For a do statement

S: do B1 --+ S 1  B 2 -' S 2  B, I B-S, od

and a primitive assertion P:
(P) GEvalao(S) {PA^((at(Si)= Bj)^ ... A (at(S.) =*B.)

A (after(S) =*(-, B I^ ... A--, Bj))I

The inference rule for do is based on a loop invariant, an assertion I that holds before and after every

iteration of a loop and, therefore, is guaranteed to hold when do terr,1.ates-no matter how many
iterations occur.

do Rule: (a) {11 GEval,,(S) (R),
(b) (R A at(S 1)) =* P 1, .. ,(R A at(S.)) :=* P,
(c) {PI) Po(sO ), (.. P'.) PO(S.) {1}
(d) (R A^after(S)) =* AI ^-B I^ ... A--,B.)

S: do B 1 P- {PuIPO (Si) (I)

a B. -* (P,) Po(S.) (1)
od

A -,B1 A ... A--B,)

-8-



The inference rule for a cobegin is based on combining proof outlines for its component

processes. An interference-freedom test [Owicki-Gries 761 ensures that execution of an atomic action

in one process does not invalidate the proof outline invarivnt for another. This interference-freedom

test is formulated in terms of triples,

NI(a,A): {pre()^A} a (A),

that are valid if and only if a does not invalidate assertion A. If no assertion in PO(Si) is invalidated

by an atomic action a then, by definition, po(s,) also cannot be invalidated by cc. Therefore, we can

prove that a collection of proof outlines PO(S 1 ), ..., PO(S,) are interference free by establishing:

For all i, j, li5n, lj5n, i j:
For all atoraic actions c in Si :

For all assertions A in PO(Sj): Nl(a, A) is valid.

The following inference rule determines when a valid proof outline for a cobegin will result from

combining valid proof outlines for its component processes:

cobegin Rule: (a) PO(S 1 ), ..., PO(S,)
(b) P => pre (PO(S I)) A ... Apre(PO(S )),

(c) post(PO(S 1)) A ... A pOSt(PO(S&)) = Q,
(d) PO(SI), ..., PO(S,) are interference free.

{P} cobegin PO(SI) // "'" // PO(S ) coend {Q)

Since execution of an atomic action a in one process never interferes with a control pred;cate cp

in another, certain interference-freedom triples follow axiomatically.

Process Independence Axiom: For a control predicate cp in one process and an atomic
action a in another:

Icp=C} a {cp=C)

Notice that Nl(ax, cp) follows directly from this axio.n when a and cp are from different processes.

2.4. From Proof Outlines to Safety Properties

Theorems of Proof Outline Logic can be used to verify safety properties because of the way

proof outline validity is defined. If a proof outline PO(S) is valid then po(s) must be an invariant.

And, if 'po(s) is an invariant, then according to the mel hod of §1 for proving safety properties we can

prove that executions of S starting with pre(PO(S)) true will satisfy the safety property proscribing
- Q. We simply prove

(2.8) (cp AAcp) =Q

for every assertion AC, in PO(S), where AC,, is the assertion that PO(S) associates with control predi-
cate cp. For example, we prove as follows that for the absolute value program in Figure 2.2,
after(S)=z x=abs (X) holds during execution started in a state satisfying at(S) A x=X: First, because

post(S) = x=abs(X) is valid, for the case where cp is after(S), (2.8), which is

after(S) A post (S) = (after(S) = x =abs(X)),

is valid. Second, for the case where cp is not implied by after(S), (2.8) is trivially valid.

-9-



3. Real-time Actions

We must know something about the execution times of atomic actions in order to reason about

timing properties of programs. Therefore, for each unconditional atomic action 4 cx in our program-
ming language, we define corresponding real-time actions ai. . where 8 and , are real-valued, non-
negative constants. Execution of a real-time action a[8, El causes the same indivisible state transfor-
mation as oL does, but constrains it to occur at some instant between , and E+8 time units after the
entry control point for x[8, e1 becomes active.

We have elected to characterize the execution time for a real-time action in terms of two param-
eters (6 and e) in order to have flexibility in modeling various execution environments. Parameter c
describes the fixed execution time of the atomic action on a bare machine; 8 models execution delays
attributable to multiprogramming and other resource contention. A system where each process is
assigned its own processor is modeled by choosing 0 for 8; a system where processors are shared is
modeled by choosing a value for 6 based on the length of time that a runnable process might have to
wait for a processor to become available.

3.1. Reasoning About Real-time Actions

Execution of a real-time action as, E affects the program variables and control predicates in the
same ways as the atomic action a from which it was derived. Therefore, we have the following infer-
ence rule:

Real-time Action Transformation: For ax an unconditional atomic action, P and Q primitive
assertions, and 0<5 and O<F:

(P} a[SE! (Q}

To reason about timing properties, additional terms must be added the assertion language. This
is because the method of §2.4 for reasoning about safety properties can only be used to prove safety
properties for which the negation of the proscribed -, Q is implied by each of a proof outline's asser-
tions. Timing properties concern the instants at which control predicates become active and so we
define a term for each control predicate cp:

rthe time that cp last became true or
TcP L-__ if cp has never been true

We also define a new real-valued term 'T to be equal to the current time.

Some additional axioms and inference rule allow us to reason about formulas of our more
expressive assertion language. First, the various non-atomic statements of our programming
language give rise to axioms based on the way they equate their components' control points. For our
programming language, these axioms are given in Figure 3.1. Second, there are some language-
independent axioms. In these, cp and cp' can denote any control predicates, including those not asso-
ciated with entry or exit control points for real-time actions.

4An atomic action is unconditional if it is executable whenever its entry control point becomes active. In the program-
ming notation of §2.3, skip, assignment, and the guard evaluation action for do are unconditional. The guard evaluation for
if is not unconditional.
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Sequential Composition Axioms: For S the sequential composition S I S 2 :
(a) Tat(S) = Tat(S 1)
(b) Tafter(S) = Tafter(S2)
(c) Tafter(S 1) = Tt(S 2)

if Axioms: For an if statement:
S: if B I- S 0l B2 -*S2 0l ... 0 .- fi

(a) Tat(S) = Tt(GEval $S))
(b) Tafter(S) = MaX(Tafter(S 1), Tafter(S2), ... , Tafter(S.))
(c) Tafter(GEval,,(S)) = max(Tt(S i).Tat(S2), ...Tat(S,))

do Axioms: For a do statement:
S: do B, -+S 0 B2 - S2  0] ... B,,- S,,od

(a) Tt(GEval&~(S)) = MaX(Tt(S), Tafter(S 1). Tafter(S2), ... , Tafter(S,))
(b) Tafter(GEval&,(S)) = maX(Tat(S 1), tat(S2 ), ... , Tat(S.) , Tafter(S))

cobegin Axioms: For a cobegin statement:
S: cobegin S1 I S2 // ... /5/, coend

(a) Tat(S) = Tat(S I) = .. Tat(S,,))
(b) Tafter(S) = MaX(Tafter(Sl), ... , Tafter(S,,))

Figure 3.1. tcp Axioms

(3.2) (tcp = -- ) => -, cp

(3.3) For a real time action cq,, with label S: (a) at(S) = Tat(S)5T5Tat(S)+S+e

Axioms (3.1) and (3.2) follow directly from the definition of tcp. Axiom (3.3) captures that essence
of a real-time action-that its entry control point cannot stay active too long. This, in turn, allows us
to infer that a control point is not active by using

because from (3.3a) we have:

= <( Predicate Logic*
at(S) =* ((tat(S):5T) A (T Tat(S)+8+e)

= 4(Predicate Logic*

= 4(Axiom (3.1)*

T~tatS)+8+ =* -11-S



The effect on these new terms of executing atomic actions is captured by the fol!owing axioms
of Proof Outline Logic. First, for any ordinary or real-time atomic action, we have:

Tcp Invariance: (cp=CA cp=V} S: a {(cp=C) (Tcp=V))

The antecedent in the postcondition is necessary for the case where cp is after(S), since executing S
does change the value of after(S).

Next, for any ordinary atomic action:

Action-time Axioms: (a) {K<5rat(S)} S: a {KSrafter(S)}

(b) {K<'T} S: a {K<Tafter(S)}

Action-time Axiom (a) asserts that the exit control point for S becomes active after any of its entry
control points last became active. Action-time Axiom (b) asserts that the exit control point of S
becomes active later than any time that the entry control point for S was last active.

For a real-time action a,8, the following axiom characterizes how execution changes T and
the Tcp-terms.

Real-time Action Axiom { K< Tat(S)) S: aoti. j { K+e< Tafter(S))

This axiom is analogous to Action-time Axiom (a), except now the postcondition has been
strengthened to give a tighter lower bound on when the exit control point for S first becomes active.

Two things that the Real-time Action Axiom does not say are worthy of note. First, this axiom
does not bound the interval during which the entry control point for S is active. This is because that
bound already can be derived using axiom (3.3a), since at(S) holds whenever the entry control point
for S does. Second, one might expect to be able to prove the following triple-its precondition being
similar to that of Action-time Axiom (b).

(3.5) {K59"1 S: aj8, ] {K+e 'TI

Unfortunately, (3.5) is not sound. Execution of S started in a state such that Tat(ax) < K5 T would
satisfy the precondition but might terminate before K+e. For example, consider an execution of
C40, 21 that is started at time 0. Thus, at time T=I the state would satisfy K 5 T for K= 1, and so
precondition K_'Twoud be satisfied by that state. When execution of a 0 21 terminates-2 units after
it is started-at time 'T=2, the postcondition K+e<'T is 1+2<2, which is false.

Finally, the following rule allows rigid variables to be instantiated with expressions involving
Tcp-terms. (Rigid Variable Rule only allows rigid variables to be instantiated by constants, rigid vari-
ables, or expressions constructed from these.)

Tcp-lnstantiation (Tcp=V) ot (Tcp=V), (P} a (Q)
(PXCP a {aQxP

This rule is typically used along with one of the Action-time Axioms or the Real-time Action Axiom.
For the case where real-time action ax and control predicate cp are in different processes, the first
hypothesis of Tcp-Instantiation is automatically satisfied, as the following proof of
{Tcp=V) ax {1cp=V} demonstrates.

Process Independence Axiom:
1. {at(p)=C) a {at(I])=C)
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tcp Invariance:
2. (at(P)=C A Tat(P)=V) a [(at(P)=C) =* (tat(P)=V))

Conjunction Rule with I and 2:
3. {at(P)=C A Tat()=V) cc {at(p)=C A ((at(p)=>C) =*( at(p)=V))}

4. at(p)=C A ((at(p) = C) => (at(13)=V))
= ~<Predicate Logic*
Ta(1)=V

Rule of Consequence with 3 and 4:
5. {at([)=C A Tat(p3)=V) cc {Tat(13)=V)

Rigid Variable Rule with 5, replacing C by true and then by false:
6. {at(O) A Tat(p)=V) aC {Tat(p)=V}
7. {-,at(]) A Tat(p3)=V) C {tat(p)=V)

Disjunction Rule with 6 and 7:
8. {(at(p) v --,at(p)) A Tat(p)=Vl a {Tat(p)=V}

Equivalence Rule with 8:
9. {Tat(p)=V} a {at(p)=V}

Thus, we obtain a derived rule of inference:

Derived Tcp-lnstantiation: If atomic action a and control predicate cp are in different
processes:

{P} a {Q)

3.2. Interference Freedom Revisited

When the execution times of atomic actions are bounded, certain forms of interference cannot
occur. This is illustrated by the proof outline

{x=O}
cobegin

(x-Oj a: :=x+l)[o, 21 {x=l}

{x=O) 13: (y :=x+l)to,l ! {y=l}
coend
{x=l Ay=l}

which is valid but cannot be derived using the cobegin Rule because PO(a) and PO(P) are not
interference free. In particular, NI(a, pre(p)) is not valid.

N (x, pre(p))

= (pre(a)Apre(p)) (x :=x+l)[o, 21 {pre(p))

= (x=O) (x :=x+l)[0, 21 {x=O)

Using operational reasoning, however, it is not difficult to argue that execution of a cannot invalidate
pre(O) and so PO(a) and PO(P) should be considered interference free. This is because according to
cobegin Axiom (b) in Figure 3.1 both at(a) and at(3) become active at the same instant, say time 0.
By definition, a completes at time 2, and so x remains 0 until this time. Real-time action p completes
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at time 1 and, therefore, must find x to be 0. It is simply not possible for a to change the value of x
while at(f) is active.

Our cobegin Rule is based on a form of interference freedom that does not take into account
execution-time bounds of real-time actions. In particular, Ni(aX, Acp) does not account for the fact
that although AC, might be associated with an active control point cp when Ia is started, if A is the
precondition of a real-time action then we may be able to prove that cp cannot be active when a com-
pletes. The remedy is to refine Nl(ix, Apt) taking into account the time bounds for how long an entry
control point for a real-time action can remain active. The following triple accomplishes this.

Nlt(aAcp): (at(a)Apre(a)^cp AAc, a {cp = Ac,)

Returning to the example above, we have:

N, 1 (o, pre (f))
= {at(a) A pre(a) A at(f) A pre(3)) (x :=x+ l)[o 21 (at(p) =* pre(3))
= {at(a)Aat(P)Ax=O} (x :=x+l) 0, 21 {at(f) =.x=O)

And, this obligation can be discharged as follows.

Real-time Action Axiom:
1. {K5Tat(a)) c: (x :=x+l)0 , 21 [K+2<_Tafter(a)}

Derived Tcp-Instantiation with 1:
2. {at(f0)_Tat(ax)} X: (X :=x+1) 1 0, 21 {Tat(p)+2<Tafter(a)}

Axiom (3.1):
3. rafter(a)<'T

Rule of Consequence with 2 and 3:
4. {at(3)_Tat(a)) a: (x :=x+l) 0 . 21 {Tat(f3)+2_'T}

Axiom (3.3a):5. at(p3) =* at(p3)<5T5 Tat(3) +lI

Predicate Logic:
6. ((Tat(0)+2<') A (at(3) = at(3)<'TTat(p3)+l)) = --,at(f)

Rule of Consequence with 4, 5, and 6:
7. {Tat(3)<Tat(a)) a: (x:=x+)[o, 21 [-at(3))

Predicate Logic and Tat(a)=Tat(b) from cobegin Tcp Axiom (a):
8. pre(Nlrl(ccpre(f3)) = at(f3)<Tat(a)

9. --' at(p3) => post(N4l(cc, pre(f3)))

Rule of Consequence with 7, 8, and 9:
10. NI,,(a pre(p3))

4. Example: A Mutual Exclusion Protocol

Knowledge of execution times can be exploited to synchronize processes. A mutual exclusion
protocol attributed in [Lamport 87] to Mike Fischer illustrates this point. The core of this protocol
appears in Figure 4.1. There, c, d, c' and d' are real-time actions. Provided the parameters of these
real-time actions satisfy
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x :=0
cobegin

a: ifx=O -4 b:skipfi
C: (X := l (C)l
d: (skiP)8(a), E(d)]
e: ifx=l -4 f:skipfi

Critical Section 1
//

a': ifx=O -4 b': skip fi
c': (x := 2)lac I, c')l
d': (skiP)[8(ad), (d-)1

e': if x=2 --4 f': skip fi
Critical Section 2

coend

Figure 4.1. Mutual Exclusion Protocol

(4.1) 5(c')+e(c) < e(d)

(4.2) 8(c)+e(c) <E(d')

this protocol implements mutual exclusion of the marked critical sections.

Mutual exclusion of after(e) and after(e') is a safety property. It can be proved by constructing
a valid proof outline in which post(e) = - after(e') and post(e') = - after(e). A standard approach
for this is to construct a valid proof outline in which -, (post(e) A post(e')) is valid. It is thus impos-
sible for after(e) A after(e') to hold because that would imply post(e) A post(e').

A proof outline for one process is given in Figure 4.2; the proof outline for the other process is
symmetric, with "1" everywhere replaced by "2" and the primed labels interchanged with unprimed
ones. Notice that post(e) =*x=1 and post(e')=: x=2. Thus, the proof outlines satisfy the conditions
just outlined for ensuring that states satisfying after(e) A after(el) cannot occur.

It is not difficult to derive the proof outline of Figure 4.2 using the axiomatization of real-time
actions given above. The proofs of fpre(c)} c (post(c)j and {pre(d)) d {post(d)) are the most
enlightening, as they expose the role of assumptions (4.1) and (4.2) in the correctness of the protocol.
Here is the proof of {pre(c)) c {post(c)):

Assignment Axiom:
I1. (true}):(x: 1)8c,( X=l}

2. x=l
((Axiom (3.1)*

x=I A Tt(c*)<T
:= oassumption (4.1)*

x=1 A tat(c+8(c)+E(c)-E(d)<T
=: ,Predicate Logic*
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ltrue)
a :ifx=O -* {?at(c') '1)

b: skip
(Tat(c') '71J

ii (Tat(c')1
C: (X =08o c)

{x*O A (at(c')= Tat(c')+5(c')+E(c')-e(d) <Tat(d)) I
d: (ski p)[(d). c(d)]

[X*OA -, a(c')
e: ifx=l -4 {X=1A-, at(c'))

f: skip

fi {X =IA-, at(c'))
Critical Section 1

Figure 4.2. Proof Outline for Mutual Exclusion Protocol

X#O A Ttc)8c)F()ed<

Rule of Consequence with 1 and 2:

Action-time Axiom (b):

Derived tcp-Instantiation with 4:
5. { Tat(c'):5 T) c: (x := 1)[8(c), (c)I (Tat(c') 5Tafter(c)J

Conjunction Rule with 3 and 5:
6. {Tt(c') 'Tfl

{X*O A Tat(c')+8(c')+e(c')-e(d)<TA Tat(c' Tafter(c))

7. Tat(c')+8(c')+e(c')-e(d) <TIA Tat(c")STafter(c)
<< assumnption (4.1) and Tafter(c)=Tat(d)*

Tt(c')+8(c')+e(c')-e(d) < Tat(d)
K~4Predicate Logic*

at(c') =*Tt(c')+8(c')+e(c')-e(d)<tat(d)

Rule of Consequence with 6 and 7:

And, here is the proof of fpre(d)) d {post(d)).
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skip Axiom:

Real-time Action Axiom:
2. (K:5 t(d)) d: (skip)[8(d) c(d)J { K+e(d) : Tafter(d))

Rigid Variable Rule with 2, instantiating K with L+5(c')+e(c')-E(d)+K where 0O<Ki:
3. (L+8(c')+e(c')-e(d)+1C!5Tat(d))

( L+S(c')+egc')-e(d)+ic+(d) 5Tafter(d)}

Predicate Logic, since 0 < Kc:

5. L+8(c')+e(c')-e(d)+C+E-(d) Tafter(d) = L+8(c'i+e(c') <iafter(d)

Rule of Consequence with 3, 4, and 5:
6. {L+8(c')+e(c')-e(d) <Tat(d))

{L+8(c')+E-(c') < Tafter(d))

Derived TCp-Instantiation, replacing L by Tat(c'):

d: (skip)s(d), E(d),

{ Tat(c') + 5(c') + r(c') < Tafter(d))

8. Tat(c')+8(c')+e(c') < Tafter(d)
*~ Axiom (3. 1) applied to after(d))o

<( .theorem (3.4) applied to at(c *

Rule of Consequence with 7 and 8:
9. {Tat(c')+8(c')+e(c')-c(d) <Tat(d) I d: (skip)[8(d),E~d)J {-' atll')

Process Independence Axiom:

Disjunction Rule with 9 and 10:
11. fat(c') * Tt(c')+B(c')+e(c')-e(d) < Tat(d) I d: (skip)[r(d) e(d)I - az(c') I

Conjunction Rule with I and 11:
12. {X*0 A (at(c') =* a~)5c+~c-~)Ttd)

( X *0 A - tc)

Notice how timing information is used in step 7 to infer that a particular control point cannot be
active.
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5. Discussion

5.1. Other Work based on Proof Outlines

It is instructive to compare our logic with that of [Shaw 89], another Hoare-style logic [Hoare
69] for reasoning about execution of real-time programs. In [Shaw 89], the passage of time is
modeled by augmenting each atomic action with an assignment to an interval-valued variable RT so
that RT contains lower and upper bounds for the program's elapsed execution time. The Statement
Composition Rule and the Assignment Axiom are then used to derive rules for reasoning about these
augmented atomic actions.5 Our logic is obtained by augmenting the assertion language (of an under-
lying logic of proof outlines) with additional terms (Tcp and 'T) and devising new axioms for reason-
ing about these terms. We are not able to derive rules for real-time actions by using the original logic
because we do not employ assignment statements to model the passage of time.

Although more complex, augmenting the axioms rather than the atomic actions has led us to a
more powerful logic. First, having the Tcp-terms allows the logic to be more expressive. These terms
permit the definition of properties involving historical information-information that is not part of
the current state of the program. Timing properties that constrain the elapsed time between events
can only be formulated in terms of such historical information. The logic of [Shaw 89] has no way to
express historical information and, consequently, can be employed to reason about only certain tim-
ing properties.

Second, our axiomatization allows reasoning about programs whose timing behavior is data-
dependent. The logic of [Shaw 89] does not permit such reasoning. For example, because of the way
statement composition is handled in [Shaw 89], the logic produces overly-conservative intervals for
time bounds. This is illustrated by the following program, which takes exactly 10 time units to exe-
cute.

if B . skiplo,91 0I -,B -- skiplo11 fi
if B skipo,.11 0 - B skip[o.91 fi

This fact can be proved in our logic, the logic of [Shaw 89] can prove only that execution requires
between 2 and 18 time units.

A Hoare-style programming logic for reasoning about real-time is also discussed in [Hooman
911. That work is largely incomparable to ours. First, the programming language axiomatized in
[Hooman 91] is different, having synchronous message-passing and no shared variables. This is
symptomatic of a fundamental difference in the two approaches. The emphasis in [Hooman 911 is on
the design of compositional proof systems. Shared variables cannot (at present) be handled composi-
tionally and so they are excluded from programs. In contrast, we do not require that our proof system
be compositional.6 Relaxing this compositionality requirement means that it is not difficult to extend
our logic for reasoning (non-compositionally) about programs that employ synchronous message-
passing or any of the other communication/synchronization mechanisms for which Hoare-style
axioms have been proposed.

Ihe idea of augmenting actions with assignment statements in order to reason about the passage of time is discussed
in [Haase 81], where it is used to extend Dijkstra's wp [Dijkstra 75] for reasoning about elapsed execution time.

'he cobegin Rule of Proof Outline Logic is not compositional because its interference-ffreedom test depends on the
internal structure of the processes being composed.
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The types of properties handled in [Hooman 911 is also incomparable to what can be proved
using our logic. Timing properties make visible the times at which control points become active
through Tcp-terms. A compositional proof system cannot include information about control points in
its formulas because they betray the internal structure of a component. The logic of [Hooman 91],
therefore, may only be concerned with the times at which externally visible events occur: the time of
communications events and the time that program execution starts and terminates. This turns out to
allow proofs of certain liveness properties as well as certain safety properties. Our logic cannot be
used to prove any liveness properties.

5.2. Incompleteness Concerns

A soundness proof for the logic of this paper will appear elsewhere. The issue of completeness,
however, is a bit problematic. The following proof outline illustrates the difficulties. It is valid, but
is not provable with our logic.

(5.1) {T=O) a: skip[o, 21 {'T=21 b: skip[o, 21 {'T=41

A related proof outline is provable:

(5.2) {0<tat(a)<'T<2} a: skiplo. 21 {2<Tat(b)<T<_4) b: skipo,21 {4<Tafter(b)<5T}

Notice that the assertions of (5.2) characterize system states that would exist "during" the execution
of a and b; the assertions of(5.1) do not.

A deficiency in our logic is one explanation for this situation, a deficiency in the definition of
proof outline validity is another. Proof outline validity is defined in terms of a set (!Hs ) of infinite
state sequences that model execution of S started from any program state. This set contains no
sequence whose successive states differ only in their values of ', the states that assertions in (5.2)
characterize and those in (5.1) do not. Certainly such states exist during program execution; we have
simply chosen to define 9rs so that states are recorded only when the value of some Tcp-term
changes. Now consider a set 94s' that does contain sequences having such temporal interpolation
states. If we replace 91s in Valid Proof Outline (2.7) by 91s, then (5.2) remains valid and (5.1)
becomes invalid. The incompleteness problem is gone.

There are also other reasons to prefer 51 in defining proof outline validity. Invariance under
temporal interpolation seems to be the real-time analog of invariance under stuttering, something that
is critical when proving that one specification or a program implements another. Unfortunately, the
logic of this paper is unsound when tqs is used in place of 91*. The existence of temporal interpo-
lation states causes a new form of interference. This interference is easily dealt with by extending the
definition of interference freedom.

Another concern when designing a logic is expressive completeness. Timing properties include
many, but not all, safety properties of concern when reasoning about the behavior of real-time pro-
grams. This is because the historical information in a timing property is limited to times that control
points become active. One might also be concerned with the elapsed time since the program vari-
ables last satisfied a given predicate or with satisfying constraints about how the program variables
change as a function of time. Both are safety properties but neither is a timing property (according to
our definition in §1). In general, safety properties can be partitioned into invariance properties and
history properties. The invariant used in proving an invariance property need only refer to the current
state; the invariant used in proving a history property may need to refer to the sequence of states up to
the current state. Timing properties are a type of history property.
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A version of Proof Outline Logic does exist for reasoning about history properties [Schneider
92]. It extends ordinary Proof Outline Logic by augmenting the assertion language with a "past state"
operator and a function-definition facility. In this logic, our Tcp-terms can be constructed explicitly;
they need not be primitive. And, the more general class of safety properties involving times--be it
times that predicates hold or times that control predicates hold---can be handled.
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